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Finite volume methods on a structured quadrilateral or hexahedral
mesh have very attractive properties for the first-order Euler equations,
with the gell vertex scheme being preferred for its accuracy and greater
compactness, Somewhat surprisingly, although this scheme is less
compact than its competitors for the second-order convection-
diffusion or Navier-Stokes equations, its accuracy properties arg even
more remarkable, being attained with ne upwinding parameters,
However, there are difficulties in setting up and solving an appropriate
set of cell residual equations. In this paper we present a consistent cell
vertex discretisation, together with multigrid pseude-time stepping
procedures which come close to setting the cell residuals to zero; the
generalised Lax-Wendroff procedure that is used is a significant
difference from previous attempts to use similar schemes, Results are
given for laminar flow, where careful comparisons are made to
dernonstrate accuracy, and turbulent flow with an algebraic turbulence
model.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Throughout the last decade there has been intense discus-
sion over the relative merits of various cell centre and cell
vertex formulations of the finite volume methods which are
widely used for computing compressible flows. We present
the case here for a specific cell vertex formulation for
the Navier-Stokes equations. In the scheme the discrete
equations are set up on a structured body-fitted mesh which
is quadrilateral in two dimensions and hexahedral in three
dimensions. The mesh is generated within a multiblock
framework, with multigrid to be applied over the whole
structure. The discrete equation solver used is a pseudo-time
stepping algorithm which is based on the Lax—Wendroff
scheme first used by Ni [247 and developed in [9, 18, 21,
19, 4]. :

For a system of first-order equations on a rectangular
mesh, the cell vertex method reduces to the well-known box
scheme associated with the names of many different authors
working in different application areas—Thomas, Keller,
and Preissman, for example—and is widely valued for
its compaciness, accuracy, and unconditional stability.
Similarly, for the steady Euler equations its properties have

been widely appreciated and studied, both in one dimension
[2, 13, 23] and in two dimenstons [24, 9, 21]. These include
maintenance of accuracy under mesh distortion, absence of
all but the chequer-board spurious error mode, and
availability of shock recovery and similar techniques for
treating shocks with only the minimal amount of artificial
viscosity.

The distinctive feature of the cell vertex discretisation is
that conservation is applied to the body-fitted mesh cells, or
primary cells, with the unknowns held at the celi vertices
and on the boundaries—see Fig. 1. By contrast, we use the
term cell centre for schemes in which conservation is applied
to these primary cells but the unknowns are associated with
the cell centres, and therefore are not on the boundaries,
such as in [11]. Another class of schemes are the vertex-
based or vertex-centred methods where the unknowns are
held at the primary cell vertices but conservation is applied
over a secondary system of cells centred on the unknowns,
with a half cell being used at the boundary, such as in
[s, 10].

We are firmly of the view that in a Navier-Stokes
discretisation the inviscid and viscous fluxes shouid be
consistently approximated over the same ceil edges/faces
of the mesh, in order to ensure a proper flux balance at
convergence. However, although vertex-based schemes of
this type have been studied in [10], we are aware of no
other authors who have developed this approach with the
cell vertex scheme as just defined; it is advocated in [8, 12]
for the one-dimensional convection-diffusion equation and
Burgers’ equation respectively; and in [6,26] it is
considered for the Navier-Stokes equations but is rejected,
apparently because of difficulties in solving the equations.
Several authors, see, e.g., [16.27, 6], have instead com-
bined a cell vertex approach to the inviscid fluxes with a ceil
centre approach to the viscous terms.

The main reason for not using the consistent cell vertex
formulation lies in the difficulty in setting up and solving the
discrete equation system. As a first demonstration of this
problem, consider the one-dimensional hyperbolic problem
f (w)=s(w, x) for the unknown w, to be approximated at
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mesh points x; by W,. The cell vertex discretisation yields
the cell equations
F,—F,_1=3(x;—x,_}8+S§,_,), (L1)
where F,:=f(W;) and 8, :=s(W, x,). Suppose first that all
the eigenvalues of the flux Jacobian matrix A :=d¢f/0w are
positive. Then all the boundary data is given on the left, at
xy say, and the application of (L.1) for j=1, 2, .., J suc-
cessively determines ali values {W;}7_ by the solution of a
local nonlinear system. This can be achieved quickly and the
resulting solution values are second-order accurate on any
non-uniform grid. This is the ideal situation for the cell
vertex method, However, more generally, as for a transonic
nozzle flow problem, the ecigenvalues have different signs
which change over the domain. Some boundary data will be
given on the right and some on the left, and the total num-
ber of equations given by (1.1) may not match the number
of unknowns. However, the discrete problem can be made
to count correctly if in setting up the equations due account
is taken of cells over which the eigenvalues change sign; for
the nozzle problem this entails splitting a residual at the
sonic point and combining two at the shock. A highly
accurate solution is then obtained by solving the discrete
equations, which can be achicved by an efficient procedure
described in [23]. A closely related scheme has been used by
Casier et al. [2], and the use of such switches at sonic and
shock points is, of course, well established.
Next, consider the cell vertex discretisation of the

one-dimensional scalar convection-diffusion equation
{(—ew,+ f),=s{x), with f = f(w), iL.e,
(—BW}‘FF})—(—SW}_]"'EI'_])
=%(xj_xj—1)(‘sj+sj—l)1 {1.2)

where F,:= f(W,) and an approximation of the gradient is

introduced of the form
W, =[g,D, +(1-2)D_TW, (1.3)

Here D, and D_ are the forward and backward divided

difference operators, respectively, and «, is a weighting
parameter such as o, = (x,,  —x,;)/{x;,, — x;_,). The result
is a four-point scheme based on the interval {x;_,, x)),
whereas virtually all other schemes that have been devised
for such problems are three-point schemes centred at a node
x;, where a standard second-order difference is used for the
diffusion and some sort of upwinded difference is needed for
the convection term. However, for the cell vertex method
with Dirichlet data prescribing w(x) at each end of the inter-
val, there will be J—1 unknowns and J intervals so
that (1.2) cannot be satisfied on all of them. The solution
adopted in [15, 7] is to associate each unknown with the
cell on its upwind side; so if a = df/éw > ( everywhere and
hence any boundary layer is on the right, the right-hand cell
is ignored and (1.2) is solved for j=1, .. J—1, with
extrapolation for W{ used to replace (1.3). A detailed
analysis in [15, 7] shows that this four-point approxima-
tion has remarkable monotonicity and accuracy properties
on virtually any mesh and for any value of ¢ For a three-
point scheme these properties can generally only be
obtained with careful adjustment of an upwind parameter.

Unfortunately, we have not yet been able to devise proce-
dures for the multidimensional Navier-Stokes equations
which correspond to the careful association of cell residual
equations with nodal unknowns described in the two
examples given above. Qur use of a Lax—Wendroff proce-
dure constitutes a compromise which will often somewhat
degrade the quality of the solution; but the use of the
generalised Lax—Wendroff scheme introduced in [19, 4]
greatly reduces the damage. Suppose, for example, we
denote by 4,_,,, the difference between the left- and the
right-hand sides of (1.2); then a Lax—Wendroff iteration can
be written

v
wrl = W;‘—ZT:; [ +ve) di_ o+ (1 =ve) 47, 0],
7
i=12,.,J-1, (1.4)

where v, and v are CFL parameters, and at convergence
the quantity in square brackets is set to zero. With
a standard Lax-Wendroff scheme vy =v-=v and con-
vergence requires choosing v < 1. This means that, in
general, the system of equations actually solved depends on
the choice of this iteration parameter; the individual cell
residuals decouple only when there is no boundary condi-
tion on the right, as in the nondissipative case e=0, and a
one-sided update at j=J sets 4, ,,=0. At the worst
extreme v — {, corresponding to a simple averaging of the
residuals which might be used in a Runge-Kutta update, the
properties of the cell vertex scheme are entirely destroyed;
and any choice v < 1| will clearly lead to oscillating residuals.
The first advantage of the generalised Lax—Wendroff proce-
dure, then, is to separate the choice of v-, which determines
the equations solved at convergence, from that of v, which
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defines the iteration. Convergence requires vevy < 1; but
the second advantage is that this allows the choice v~ > 1,
which leads to a monotone decay of the residuals like
(ve—1)/(ve+ 1) In particular, taking v.-=1 corresponds
to full upwinding and has the desired effect of setting
4, _1p,=0for j=1,..,J—1 Note that taking v, too large
could give too thick a boundary layer because of added
diffusion, so that care is needed with systems of equations—
see {23] for a discussion of a similar situation with shocks.

It is this use of the generalised Lax—Wendroff update that
distinguishes the present method from previous attempts to
use the cell vertex scheme for the Navier-Stokes equations.

The development of these ideas to solve the Navier—
Stokes equations is set out in the rest of the paper as follows.
The discretisation of the inviscid and viscous fluxes is
described in the next section, and Section 3 is devoted
to describing the pseudo-time stepping procedures used.
Finally, in Section 4, results are presented and discussed for
various aerofoils at low Reynolds numbers, using the
laminar equations, and at higher Reynolds numbers, using
an algebraic turbulence model.

2. DISCRETISATION OF INVISCID AND
VISCOUS FLUXES

In this section we describe the cell vertex discretisation of
a system of steady two-dimensional, viscous conservation
laws of the form
f{w,Vw)+g (w.Vw)=0, (x,p)e@. (21)
Here w{x, y) is a vector of unknowns and f(w, Vw) and
g(w, Vw} are vector-valued flux functions which can be split
into inviscid and viscous components, which are often
treated differently, such that

fiw, Vw)=F(w) + " (w, Vw)
and
glw, Vw)=g/(w)+g"(w, Vw). (2.2)

In the case of the Navier-Stokes equations the unknowns
and the fluxes have the nondimensionalised form

P pu pu
2
+
W= pu y fl = pu g s g" = ,CZ'UU (23}
pu puv pro+p
pPE puH pol
0 0
—1 -1
i-v = xx , v = Xy ,

Ty B Ty

TUHT T Vg +q,

where p, u, v, p, E, and H denote the density, the two
Cartesian components of velocity, the pressure, the total
specific energy, and the total specific enthalpy, respectively.
The deviatoric stress and heat conduction terms are given

. 2u (2614 dv . _,u(?g_i_au)
YT 3Re\ dx ay)’ ¥ Re\dy  ax/)’

{2.5)
S ML
YT 3Re N\ dy ax)’
4= i oz
T (p—1)M?2 ReProx’
! (2.6)
K aT
qy:—

(y—1) M2 RePray’

where y, k. Re, Pr, and M, denote the adiabatic constant,
the coefficient of thermal conductivity, the Reynolds num-
ber, the Prandtl number, and the freestream Mach number,
respectively. The viscosity p is assumed to vary with tem-
perature according to Sutherland’s law. For turbulent flows
we have used only the zero equation model of Baldwin and
Lomax [1], in which the Reynolds stresses and thermal
fluxes are modelled by an effective turbulent viscosity and
turbulent Prandt! number.

The domain @ in {2.1) is assumed to be an open,
connected subset of R* with a locally Lipschitz boundary
&2 on which appropriate boundary conditions are specified.
Since our main interest is in external flows, @ should be
infinite; but for computational purposes it is truncated and
appropriate far-field boundary conditions introduced—see
Section 3.3. We also assume that a steady solution w(x, y)
to this problem exists and satisfies an integrated form of
(2.1), namely

YO <=0,

§ (Fdy—gdx)=0 (2.7)
o£3

where @ is any sub-region of £2.

We suppose that £2 is partitioned by a set of nonover-
lapping, convex quadrilateral cells @,, ie, 8=, Q,.
The finite volume discretisation of (2.7) is then based on
approximating the boundary integral for cach €2, by an
appropriate quadrature rule. For the cell vertex method this
is the trapezoidal rule and leads to the definition of numeri-
cal flux functions F and G, computed from the ceil vertex
approximation W, and a set of cell residuals

R(W) =

V,Jas,

(Fdy—Gdx) v@,  (28)

where ¥V, is the measure of £2,. With this scaling, R (W)
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represents the rate of change of the average of W.in 2, for
the unsteady problem; for the steady problem the aim is
obviously to try to drive these residuals to zero. Moreover,
R,(w), evaluated with exact solution w, corresponds to the
truncation error of the cell vertex discretisation of (2.1).

2.1. Integration of the Fluxes

To integrate the fluxes along each cell edge we suppose
that W, F, and G all have the same functional representa-
tion over ¢ach cell. This is given by the bilinear mapping in
(¢, n) which takes the canonical square (£, 1)e[—1, 1] x
[—1, 1] into 2, {Fig. 2) and uses the coordinates of the cell
vertices—see Appendix A. From this form for W we can
recover values of VW at each vertex and hence construct
F(W,VW) and G(W, VW) of the same form. Then to
calculate R, (W) we have

§ (Fdy~Gdx)=1[(F,~F3) vpu+ (F;— F.) oy,
a2y

(G~ G3) 0x2~ (G2 — Gy} bxy],
(2.9)

where dx ;= x;— x, and similarly for dy .

For the Euler equatiens, this compact four-point
approximation has many favourable characteristics, the
most important being its accuracy on distorted grids.
Morton and Paisley [21] have shown that the truncation
error is second-order accurate as long as the cells are
parallelograms to within O(#), where 4 is the diameter of the
cell, ie., the orientations of opposite sides differ by O(k);
and second-order accuracy of the global error has been
established for two-dimensional scalar advection by Siili
[28] assuming similar regularity of the computational
mesh,

Recovery of VW for the calculation of the viscous fluxes
is most easily carried out by using a divergence form and

FI1G. 2. Mesh values to calculate R, ; @ inviscid, @ and O viscous flow.

Gauss® theorem again. Thus for a point (x;, vo) near the
centre of a sub-region £, we have

1 1
el ® =] V- (W, 0)d9=;,;35m Wdy.  (210)

The most direct application of the idea is to each vertex of
the mesh, using diagonals of the surrounding cells to define
&, as shown schematically in Fig. 3a, and the trapezoidal
rule. If x, is a vertex in a regular structured mesh at which
four quadrilaterals meet so that & is the quadrilateral
NWSE, we have the formulae

W ), = W — W, )y

(W.h ZVNW.S'E[( E w) 0¥ ns
+(Wy—Ws)oruel, (2.11a)

(Wy)1=_ - [(We—Wy)dxyg
2LNWSE
+ (W, —W)dx ... (2.11b)

Unfortunately, this approximation is second-order accurate
only on a smoothly varying mesh; we need the quadrilateral
NWSE to be within O(h) of a paralielogram, as well as the
previous assumption on the primary celis. However, the
approach has the advantage of simplicity and can easily be
generalised to cases where more than four quadrilaterals
meet at one node, as will be the case with multiblock
meshes. In Appendix A it is shown how (2.11) can be
derived from VW in each cell, evaluated at the vertex; it may
be possible to derive more accurate formulae from this
approach but this has not yet been pursued.

A more accurate approach, in general, is the following:
first, the average gradient in each of the primary cells is
obtained by integrating V- (W, 0) and V - (§, W) over each
cell as shown above. As long as the primary cells are
parallelograms to within O(#) these averages are second-
order approximations to the gradient at the centroids of the
cells. In Appendix A it is shown that this procedure is
equivalent to calculating the gradient at the centroid of the

FIG. 3. Three techniques of gradient recovery: (a) directly at vertex 1;
(b) through centroid values and interpolation; (<) an edge approximation
for WE.
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primary cell directly from the assumed isoparametric
bilinear variation of W within each cell. The gradient at the
primary cell vertices can then be recovered by passing a
bilinear interpolant through the centroid values and
evaluating it at the primary cell vertices, as indicated in
Fig. 3b,

Finally, it may sometimes be appropriate to calculate
directly the average of VW along an edge. A simple edge
approximation of this kind is obtained by integrating
V-(W,0) and V- (0, W) over the quadrilateral formed by
the end points of the edge and the centroids of two cells,
as indicated in Fig 3¢; in doing so ome sets W, =
(Waw+ Wapt+ Wy + Weld and We=(Wep+ W+
Wy + Wej/4, Other cell edge approximations may be
formed with greater accuracy properties but they are likely
to be computationally more expensive.

There remains the problem of recovering VW on a
boundary, principally on a solid wall boundary as we have
used inviscid far-field boundary conditions. Moreover, only
normal derivatives are needed: for the temperature these are
given by an assumed insulating wall condition: and for the
velocity, the technique of Fig. 3a, when applied to that part
of the quadrilateral in the domain, gives a first-order
accurate condition. Second-order accuracy is achieved by
extrapolation from this value and that at the first interior
vertex,

3. SOLUTION PROCEDURE

Having established the definition of a cell-based residual
R, based on (2.8), it remains to describe the solution proce-
dure to determine W. Difficulties associated with solving the
system of cell-based equations R, =0 ¥, = 2 include:

= the counting of equations and unknowns, and the
associated problem of imposing appropriate boundary
conditions;

+ the equation deficiency across sonic lines and
inaccuracies across shocks;

+ the chequer-board error mode.

As mentioned in the Introduction, the counting difficulty
arises through the possible disparity between the number of
cell-based equations and boundary conditions, and the
number of unknowns. This problem, and the closely related
one of shocks and sonic lines, has been studied and
overcome in a number of special cases—see [15,23]. To
circumvent this issue here, however, we shall adopt the
procedure of setting combinations of cell residuals 1o zero,
by using a generalised Lax—Wendroil scheme to distribute
contributions from each cell residual to its four corners; this
produces a “node-based” equation for each unknown which
with boundary conditions will always count correctly. The
objective is to carry out this distribution process so that

when the node-based equations are solved the cell residuals
are also driven close to zero.

Fourier analysis of the linearised cell residual, as in
[19, 227, shows the presence of a spurious chequer-board
mode, which is only controlled by the boundary conditions.
In external flow problems this control is too weak and
therefore some fourth-order artificial dissipation terms are
needed to avoid slow convergence and residual errors.
There are other spurious modes which arise when the flow
is parallel to the mesh and these have to be similarly
controlled. We shall show below that these added terms
have negligible effect on the converged solution while
significantly affecting the convergence rate.

3.1, Lax—Wendroff Distribution Martrices

The cell-based residuals R, are mapped onto the four
vertices of each cell by means of distribution matrices D, ,,
to form a system of node-based equations of the form

£=!. VfiD'x,jR'J._
Py -

x=1 x

N,(W) = 9, (3.)

where p is the number of cells meeting at node j and
normally p =4. Many alternative schemes are available for
choosing these distribution matrices and then constructing
an iterative procedure to solve the system (3.1), together
with appropriate boundary conditions—see [23] for a
comparison of schemes in one dimension, We here use a
relatively simple generalised Lax—Wendroff pseudo-time
stepping procedure.

For a cell 2,, as in Fig. 4, the distribution matrices D
are defined by

x j

Al

D:(,] =T Ve I/’)t (5})42‘41 ‘axdlBa) (323)
At, )

D, :=I—ch/—(5y13A1—bquz) {3.2b)
At,

D, :=1‘VCT/_(5}’24A1*5-‘524B=) (3.2c)
dz,

D, :=1—VCT/’(5}’31A1‘5-Y3131)1 (3.2d)

e d

where v is a global CFL number associated with the
second-order update, At is a maximal cell-based local time
step, and A, and B, arc the Jacobians of the inviscid {luxes
evaluated at the cell centre. We set

Ar, =min(dr], 4t)), (3.3a)
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FIG. 4. Distribution of the cell residual R, to the four cell vertices and
of the four cell residuals to the update at the vertex 1.

where Az! and At} are the inviscid and viscous time steps
defined by
V
AIi: 2 * 2 2
\/(Iui +¢)? max{(8ya)?, (9315)?)
+ (o] + ¢)? max({(8x4,), (8x,5)%)

(3.3b)

and
V2
A = e max(Oya ) (953)7) + max((Ors)’s (35107

(3.3¢)

Here u, v, and ¢ are averaged at the cell centre, and ¢ is the
maximum eigenvalue of the linearised Navier—Stokes terms
[14]; that is,

4“2) (3.4)

|
a_p Re X (-3— Pr

These are generalisations of the time steps derived from a
Fourier stability analysis in [ 19, 14 ]—see Appendix B for a
detailed derivation and extension of the results in [19, 14].

The total update at an interior vertex of a structured mesh
block involves four cells and 21 nodal values; referring to
Fig. 4, it has the form

(V;D:1R2+-VﬂDglR§+V7D31R3>
+V; D3 R
Vit Vet V,+V,

WIII+I:WJ]1_(D] \
(3.5)
where

w, =vydty=vymin(de,, dtg, At,, Aty)

and v, is a global node-based CFL number.

The form of the distribution matrices in (3.2) is derived
in [18] from a Taylor—Galerkin approximation to the
unsteady problem. The introduction of both a cell-based
and a node-based time-step and CFL number was
advocated in [19] (but the notation used here has been
modified to make for simpler programming), because they
play different roles. Only v At, affects the quality of the
converged approximation; while v, Az, is the main control
over the convergence of the iteration. For example, it is
shown in [23] for one-dimensional inviscid flows that the
node-based v, controls the phase speed of waves and hence
the transport of errors to the boundary, while taking
the cell-based v greater than v, gives some second-order
damping, rather than the usual fourth-order obtained with
Vo= ¥, mote importantly, taking v > 1 helps in the objec-
tive of setting to zero the cell residuals, rather then merely
the nodal residuals.

A Fourier analysis is given in Appendix B for the two
scalar problems w +aw,+bw =0and w,+aw —sw,  =0.
This, first, justifies the convergence conditions

VS Ve, vyve<1 (3.6)
that we use for inviscid flows; as seen in (B.20), the x- and
y-components of v and v, must have the same ratio, and
although by (B.26} and Fig 12, some relaxation of the
standard condition v2 + v2 < | is possible when v > vy, we
shall not use it. Second, the introduction of viscous terms
makes little difference to these conditions, as shown by the
analysis of the convection-diffusion problem. As is well
known, if a conventional Lax-Wendroff method for the
convection equation has added to it a central difference
approximation to a diffusion terms ew ., then the stability
condition v*1 has to be strengthened to v?+ 2¢ A1/
(4x)* < 1. For our scheme, in the usual case vZ > 1,(3.6) is
merely strengthened by 2vie A1/(4x)> <1, corresponding
to (3.3¢) when v =1, see Fig. 11 for a comparison. This is
an unexpected advantage of our consistent approach to the
approximation of the inviscid and viscous fluxes and is
important not only for the viscous fluxes but aiso in taking
account of artificial viscosity terms. It means that in practice
the time-steps given by (3.3a) are seldom affected by the
viscous terms except in a very thin boundary layer.

3.2. Dissipation Terms

The extent to which we need to use dissipation terms is
one measure of the further development needed with the cell
vertex method. The second- and fourth-order dissipation
terms used here are an adaptation from the cell centre
approach of [ 11] and are used to control oscillations due to
shocks and due to spurious modes such as the chequer-
board, respectively. All coefficients are cell-based and multi-
ply differences along cell edges. We use the notation 37 and
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55 to denote second differences along the body-fitted
coordinate lines, and for the coordinate direction ¢ define

2)

128 = ift roax (k3 (3.7a)
.[(4.5) ‘= max {0 E(:i_ (2.5]} {3 7b)
= T At T ’ |
where
L2
fo=——t L 37
k',, (4+(5§) pj: ( C)

with similar quantities for the » coordinate direction. These
are the forms used in laminar flow problems, but for
turbulent flow both £'* and ¢*' are scaled by the factor
min{1, M/M ,}. Using the notation of Fig. 4, the artificial
viscosity vector for cell 2, and node | is then given by

A, (W)=t 9(W — W)+t 2M(W — W)
—TBIW, —8IW ) — T?'"'(tsf,wx - 53,Wz)-
(3.8)

These terms are combined with the cell-based residual terms
in formulae (3.1) and (3.3) through the replacement
D,,R,»D, R, +A,, (3.9)

It is an important feature of these definitions that when
the A, ; of Eq. (3.8) are summed over the vertices of cell 2,
there is complete internal cancellation. Hence by (3.2), (3.9)
sums to 4R, which ensures that at convergence, even if all
the individual cell residuals are not zero, at least we satisfy
a global conservation principle. Note that at domain
{and also at inter-block) boundaries the second differences
which involve exterior points are set to zere; numerical
experiments with dummy inter-block boundaries show that
this makes very little difference to convergence rates or finai
solutions.

These are very unsophisticated artificial viscosity terms,
being scalar in character and using the very simple
switching based on (3.7). It may seem strange that we use
undivided differences, so that a linear variation on a non-
smooth mesh contributes to the second difference. This was
prompted by the observation that the chequer-board mode,
which i1s our main target, is independent of the mesh
geometry; experiments with divided differences have not
shown significant improvements.

3.3. Boundary Conditions

For solid wall boundaries the no-slip condition q =
(i, v)=0 is implemented directly by overwriting the

Lax-—Wendroff update, obtained with dummy exterior cells
which have zero residuals but non-zero measures. If the wall
temperature were specified then this wouid be dealt with in
the same way; otherwise, an insulated wail condition is
incorporated in the flux calculation as already described.

In the absence of weli-established energy absorbing
boundary conditions for general external Navier-Stokes
calculations, we have used far-field conditions based on the
Euler equations. As at a solid boundary, a predicted state
W"*" i obtained from the boundary-modified Lax—
Wendroff update. This 1s then combined with a state at
infinity W, which takes account of the circulation around
the body as in [31]. Confining ourselves to subsonic flow at
infinity, at inflow points the Riemann variables R¥ :=
q-nz2c/(y—1), corresponding to the outward normal n
are caiculated, R* from W"** and R~ from W_, and
combined to give (g-n)"*" and ¢"*! at the point; the
tangential velocity and the entropy are also taken from W
to complete the calculation of W+, At outflow points, it is
the pressure that is taken from W, and combined with the
outgoing Riemann variable, tangential velocity, and
entropy from W"** to give W+ ..

The extent of the compromises that we have made in
implementing the cell vertex method should now be clear,
and some of the consequences will be seen in the numerical
results of the next section. We have not attempted to set up
and solve a system of equations corresponding to setting to
zero the selected components of selected or modified cells
residuals, as we can with simpler problems. We have,
instead, used some of the flexibility provided by the
generalised Lax~Wendroff scheme to define a set of nodal
residuals which, apart from the effects of the artificial
viscosity terms, can be set to zero and which we hope will
lead to driving most of the cell residuals to zero.

4. NUMERICAL RESULTS

In this section the results are presented for two external
aerodynamics problems to demonstrate the accuracy of the
consistent cell vertex discretisation. We have used a single
block C-mesh with the vertex-based discretisation of the
viscous fluxes given by (2.11). A multigrid acceleration
procedure based on the standard full approximation scheme
{FAS) has been appiied to the Lax-Wendroff update, and
typically gives a sixfold increase in the convergence rate. If
the nodal equations (3.1) on a mesh /A are written
N,(W,)=f1, and R} is the restriction operator from a fine
to a coarse mesh, for the next coarser mesh we set

fir= RJ[f, — NW, )]+ N, (RIW,), (4.1}
with f, = 0 on the finest mesh. Thus at each level the discrete
problem is of the same form; but the second-order artificial
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Mach

a

Veloaty Veedors

FIG, 5. NACA0012 aerofoil with M, =0.5, Re = 5000, 2 =0°: (a) Mach contours; (b} velocity vectors at the trailing edge.

dissipation is increased on the coarser meshes to cope with
the smaller number of points in the boundary layer. The
code has been fully vectorised in Fortran 77 for a Cray
YMP supercomputer.

Our first problem is a well-documented laminar test case
for subsonic flow over a NACAOQ012 aerofoil at zero angle
of attack with Re = 5000 and M = 0.5. The mesh used has
{193 x 49) nodes, with the far-field 20 chords from the
aerofoil and the first mesh interval normal to the body of the
order 10~ * chord lengths. The main feature of the solution
is a recirculation region near the trailing edge of the aerofoil,
see Fig. 5b. The separation point can be identified in Fig. 6b
as that point where the skin friction coefficient becomes
zero. More details of the calculations can be found in [20].

To demonstrate the minimal dependence of the cell vertex
solution on the fourth-order artificial viscosity parameter
&', the viscous and inviscid drag parameters, C }, and C},,
and the separation point are given in Table I for calcula-

Pressure coefficient

xic

a

tions with a wide range of £'*, and &’ set to zero. Clearly,

a 16-fold change of & essentially affects only the work
required to reduce the nodal residuals to a given tolerance,
a work unit being defined as a calculation of the fine grid
residual. Table II shows good agreement with other results
in the literature, given the relatively coarse mesh.

Figure 7 shows the tangential velocity and corresponding
budget plots for the nodal and cell residuals, across the
boundary layer at 10% and 75% of the chord. It is clear
that, for the value of &% =001 taken here, artificial
viscosity plays a minor role in the nodal residual balance,
although its effect at the edge of the boundary layer has
increased significantly by the 75% point. Moreover, the
right-hand plots show that for this problem we have come
close to achieving the target of setling the cell residuals to
zero; note that artificial viscosity terms are not included
here and that the lack of cell residual balance is some
measure of its deleterious effects.

Skin-friction coefficient

FIG. 6. NACAO0012 aerofoil with A _ =0.5, Re = 5000, x = 0°: (a) pressure coeflicient; (b) local skin-friction coefficient.
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TABLE I

Vartation of Viscous and Inviscid Drag Coefficients, Separation
Point, and Computational Work with the Coefficient of
Fourth-Order Artifteial Dissipation, for NACA0012 Aerofoil with
M =05, Re=5000, and x=0°

TABLE II

Comparison with Other Authors for NACA0012 Aerofoil
with M, =0.5, Re = 5000, and « =0°

Separation point

Author Grid Cy ch percentage of chord
Separation point

g C‘!’_J C:’; percentage of chord Work units Present 193 x 49 0.0226 0.0325 819

{171 320 x 64 0.0229 0.0332 8§14

00005 00226 0.0325 819 8329 [16] 320x 64 00219 0.0337 819
0.002 0.0226 0.0325 82.0 7648
0.003 0.0226 0.0326 82.1 6593
0.032 0.0226 0.0330 82.3 5298

Nomal Coordinate Normal Coordinate Nprmal Coordinate
o Tangential Valocity Consgrvation of X-Momentum Conservation of X-Momentum

u.ﬁ:ﬁ

@ 088
056+

0.0

|

ana—

o035

2 L B B B e S o o e o S T T
o 025 o5 ar AL 1% r5 20
W
Normal Coordinate Normal Coordinate Normal Coordinate
Tangential Velocity Corservation of X-Momentum Conservation of X-Momentum
URLE n_ﬂ!j
@
0,16-1 0.16-1
0,14 1] 0,14
.12
[
01 015 az

FIG. 7. Solution detail normal to NACA0012 at 10% chord (top) and at 75% chord {bottom): (a) 1angential velocity. {b) nodal equation budget:
0O, inviscid; @, viscous; &, artificial dissipation. (¢} cell residual equation budget: O, inviscid; @, viscous.
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FIG. 8. RAE2822 aeroloil, with part of (289 x 81) grid.

The second problem considered is turbulent flow over an
RAE 2822 aerofoil, Case 9 of Cook et al. [3], assumed to
correspond to Re = 6.5 x 105, M, =0.73, and o = 2.79°. The
two-layer algebraic eddy viscosity model of [1] is used,
with two modifications adopted from [ 27 J—namely, use of
the maximum local shear stress through the boundary layer
and setting the constant C = 1.0. Alternative surface
definitions of the aerofoil have been used but results are
presented here for that most commonly used by other
authors. The mesh used is shown in Fig. &; it has (289 x 81)
nodes, with 225 on the aerofoil, the far-field situated 10
chord lengths from the aerofoil, and the first mesh interval
normal to the body less than 1077 of the chord length.

Comparison of the results with the experiment is shown
in Fig. 9, and with other authors in Table III. There is close

Pressure Coefficient

FIG. 9. RAE2822 aerofoil with M, =073, Re=6.5% 10%, and ¢ =2.79":

agreement with experiment on the pressure coefficient, and
this can be improved by use of a camber-corrected aerofoil
definition. The discrepancy in the skin-friction coefficient
shown in Fig. 9 near the 60 % chord length is thought to be
due to the turbulence model and is in accord with the
findings of other authors. In Fig. 10 we show budget plots
for the residuals as in Fig. 7. They are clearly not as good in
this case, although the extent to which the cell residuals are
generally driven to zero is still very encouraging. The few
oscillations very near the body require further investigation.
The mesh has extremely high aspect ratios here, and near
the leading edge this makes great demands on the recovery
technique for VW; the form of the artificial viscosity and the
switches incorporated in its definition are also rather crude.
Attempts to exploit the flexibility in choosing v-> 1 in the

Skin Friction

1
T

M
T T 1 1 T 71 L3 1 T T
di o o1 02 ©3 04 o5 08 07 08 0% 10 1t

we

, cell vertex; [, experiment [3].
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Normal Coordinate
Tangantial Valocity

Normal Coordinate
Conservitlon of X-Momentum

Normal} Coordinate
Conservatio of X-Msmentum

Normal Cocrdinate
Tangential Velotity

Normal Coordinate
Canservaticn of X-Momentum

i

Normal Coordinate

0 o7 5 4.2

[ #hou

Conservabion of X-Momentum

G045

a2 05 ors 10

b c

FIG. 10. Solution detail normal to RAE2822 at 10% cherd (top) and at 90 % chord (bottom): (a) tangential velocity. (b} nodal equation budget:
{d, inviscid; @, viscous; A, artificial dissipation. (¢) cell residual equation budget: O, inviscid; @, viscous.

generalised Lax—Wendroff scheme show some effect, but
this is limited by the use of a scalar v, (rather than the
matrix-valued v, used in [23]) and the fact that only the
inviscid Jacobians are used in (3.2), even in the boundary
layer. Further developments to address these issues are in
hand and will be reported in future publications.

TABLE III

Comparison with Other Authors for RAE2822 Aerofoil
with M, =0.73, Re= 6.5 x 10°, and « = 2.79°

Author Grid C, ch Ch Cp

Present 289 x 81 0.847 0.0122 0.0054 0.0176
[26] 257 x 65 0.842 0.0121 0.0055 0.0175
[29] 257 x 65 0.829 0.0124 0.0051 0.0175
[25] 249 x 51 0.824 0.0128 0.0050 0.0178
[30] 641 x 129 0.859 0.0124 0.0055 0.0179

5. CONCLUSIONS

The cell vertex finite volume methods described in this
paper, in which the conservation cells correspond to the
primary mesh cells and the unknowns are held at their ver-
tices, differ radically from most other finite volume schemes.
The advantage for high Reynolds number flows which
contain large areas of essentially inviscid flow is the very
compact stencil for the inviscid terms combined with the
consistent treatment of viscous and inviscid fluxes.

The main disadvantage lies in the difficulty of setting up
and solving the corresponding discrete equations. The
procedure adopted here uses distribution matrices to form
node-based equations which are solved using a standard
relaxation procedure, accelerated with a multigrid techni-
que. The distribution matrices are derived from a
generalised Lax—Wendroff algorithm which goes a long way
toward ensuring that the cell residuals are driven to zero at
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convergence; and, with the consistent flux discretisation, its
CFL convergence condition is barely affected by viscous
effects.

Budget plots of the terms in the nodal residuals indicate
the extent that artificial viscosity is needed to achieve a
balance; but budget plots of the terms in the cell residuals,
and their lack of balance, provide a much sharper check on
accuracy and indeed are related to those used in a posteriori
error estimates.

Results for laminar test problems show how well the
objectives of the method are attained in practice; those for
a turbulent problem are encouraging and indicate points
which still need attention. However, the schemes given here
are still quite simple, with scalar parameters used in defining
both the distribution matrices and the artificial viscosity
terms;, many further developments are clearly possible
which make use of decompositions based on the flux
Jacobians, and these are in hand. Also the discretization, the
analysis, and the test probiems are all in two dimensions. A
three-dimensional version of the code has been written but
its testing is al an early stage.

APPENDIX A: CALCULATION OF GRADIENTS

Suppose local coordinates (£, #) are introduced such that
the canonical square [—1,1]x[—1, 1] is mapped onto
the cell in Fig. 2 by the bilinear mapping

X(é, '7) = Z xiéi(i) '7)3 (Al)
where
¢ my=2(1+ &)1 —n),
$a(&, n)=3(1L+ &)1 +n),
(A2)
$3(& M =3(1 =&)L +n),
¢alm =311 —n);
and suppose that W(x) has the same form in 2:
W(x(&,n) =3 Wigi(&n). (A.3)
i=1

It is easy to calculate VIV in terms of dW/é¢ and dW/oy
from the relation

(wa)=2)= G 2o)w)

(A.4)

where the Jacobian and (W, W, arc

_]=1 ((1—'?)5xl4+(1+’7)5x23 (1_’1)5%4‘*'(1""1)5)’23)
AN (148) x5 +(1—E&) bx34 (1+E) 8y +(1-E) dy34
(A.5a)

(Wo, W)=3((1—9) W, + (1 +13) W,
(1+ &)W, + (1 =&)dWy).  (A.5b)

Putting £ =n=10 to obtain VW at the centroid, we have
det J=F, /4 and from (A.3) and (A.4) we have

w (W, —W;)dya

x|0.0:2—Va
+ (W= W,)éys] (A.6a)
Wio0= _ZLVN [(W,— W;)dxay
+{(W,— W,)éx3,.], {A.6b)

corresponding exactly to applying (2.10) to the primary cell
@, and hence comparable with (2.9). Similarly, putting
E=1,n=—1gives VW at x, as

1
Woi=go— [W6y2a+ Wy by + Wby, ]

ATa
2V412 ( )

W= — LW, 0x4+ Wydxy + Wedx ], (ATb)

2V,

where V,,, i1s the area of triangle (x4, x,, X5); note that
taking the area-weighted average of four such expressions
gives exactly {2.11).

APPENDIX B: FOURIER ANALYSIS OF STABILITY

Strictly speaking, to show c¢onvergence of an iterative
scheme one must show that all error modes are damped.
However, the cell vertex discretisation is known to contain
spurious modes which are only damped by the boundary
conditions. So for the Fourier analysis we seek only condi-
tions for no error growth: these conditions are then exactly
those for so-called practical stability in the unsteady
problem. We consider two scalar problems below.

(i) Convection-Diffusion in One Dimension

Consider the linear scalar problem

w,+aw, —ew 0, {B.1)

xx
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where g and ¢ are nonnegative constants and a uniform
mesh spacing k4 is used. Then the iteration (3.5) reduces to
the following approximation to the unsteady problem:

W}H b= Wj" - % AI(D_,, 1;2._;'Rf_ 12t D_:‘+ lfl,jR,’f'Jf 1/2)-
(B.2)

Introducing the difference operator 6W,; =W, — W, |
and the averaging operator oW, _, :=1(W,+ W,_ ), we
can write the cell residuals as

R} ,,=1[(alh)d— (e/h*) 0 67] Wi

7

(B.3)

and the distribution matrices, in terms of the cell CFL
number v, are the scalar quantities

Dj—l,"ljzl +\'C, Dj+1f2.j= I_VC. (B.4]
With the notation
vw=adtth,  uy=ct At/h? (B.5)

for the usual dimensionless mesh parameters in a convec-
tion-diffusion problem, the iteration (B.2} reduces to
Wit =[1—{o—yved)vyd—upyo 6T WY,  (B6)
the stability of which we will study by Fourier analysis. It
should be noted that we have reverted to a standard usage
for the CFL numbers v, or v here; this is because the intro-
duction of maximal local time-steps as in the main text is
unnecessary for a uniform mesh, and a global time-step is
required for the unsteady problem.
Making the usual substitution W = 1"e® W with &= kk
and using the abbreviations s = sin 1£, ¢ = cos 53¢, we obtain
the expression for the amplification factor from (B.6)

MEY=1—(c—ives)(2ivys + dpyes?) (B.7)
which gives
[AENP =1 —2vpves? —dpuysic?]?
+ [2sc{vy — 2upves®) ) (B.8)

For practical stability we require |4(£)|2 < 1, V& Necessary
conditions result from special cases: setting s°=1, =0
gives (1—2vyve)*<1, that is, vyve<1; and letting
s*—0 gives from the coefficient of s? the condition
4vyve+ 8uy =4vy. We summarise these in the following
statement which generalises (3.6):

Necessary stability conditions:

2
yyves |, VS VaVet+ 2y

{B9)

To obtain sufficient conditions, we expand (B.8) and
gather terms involving u, to obtain after a little mani-
pulation

[A2=1—45"{2unc’[1 — 2uns® + 2uy(1 —vE) %]

+[vave(l —vave) s+ vu{ve—vy) 21} (B.10)
It is clear that when u, =0, the conditions of (3.6), namely
vasve and vyve<1, are sufficient to ensure |A]°<1.
Furthermore, it is clear that for p, >0 we require only

1= 2pups*+ 2upy(1—vi)s*20

¥s?e[0,1].  (B.I1)

When v < 4, the minimum is attained for s* = (1 —vZ) ™!
and equals | —fuy(1—vE)~'; and when vZ 2 { the mini-

mum of 1 —2u,v2 is attained at s =1, We therefore have

Sufficient stability conditions:

vyve sl vasve (B.12a)
and
2 ! : 2 1
vetapysl if vi<s
€y =2 (B.12b)
2upviglif vizl

This region is plotted in Fig. 11 for the special case
vy =V Also plotted is the stability region for the standard
Lax—Wendrofl scheme for the convection-diffusion equa-
tion which is just v+ 2p<1. Note that the cell-vertex
conditions are not cnly much less stringent but that the
condition v’ = 1 is stable right up to g = %. Thus in the main
text above (3.3a), we have based the choice of time-step on
ensuring both v2< 1 and p <1,

(ii) Convection in Two Dimensions

We consider the equation

W, +aw, +bw, =0, (B.13)
where ¢ and b are nonnegative constants; also there is no
loss of generality in assuming a square mesh and b < a. The
celi residuals have the form, using subscripts to denote the
difference operators in the x and y directions,

R=[({a/h)é.0,+(b/h) 6,0, 1 W, (B.14)
and the distribution matrices have the form
D=1xv, . +ve,. (B.15)

With the notation

Vax=a Atfh, v, =b 4i/h, {B.16)



14 CRUMPTON, MACKENZIE, AND MORTON

1.0 —
| ' [E:I Cell vertex
4 :
r '
ri3 H Lax-Wendroff
2 { 13 1
i a5 —fraqn ;
e b ' 1
b d o la ) 1
LlJ_L 1 1
[ 1 ]
rTra=r ] ]
4 - ' i i
Lo ] ] |
Lialo ' i ‘
TN ' ] .
I I T F
4.5 1.0 13 XH
il
FIG, [1. Stability regions of the cell vertex method and the conven-

tional Lax-Wendroff method.

the iteration becomes

W}r+l = [l - (J,r— %vi 5.*:)(0._1"_ %VC_L' 6_;’)

X(VN.V 6.\*0,\'+vN_v (5_1'6,\')] W; (Bl-"')

Writing my=vy.S.c.+Vy, 5.0, Where s, =sin3¢é=
sin 3k .4 etc,, and similarly for ., the amplification factor
is easily seen to be

A n)=1-=2imy,(c.c,—im) (B.18j
which gives
(A% = (1 =2mymc)* +dmicicl
=1—dmy[me—mycic;—mymz]. (B.19)

It is clear that as s, 5, — 0 it is necessary that m. > m, for
all values of the ratio s, :5,, giving

Necessary stability conditions:

(B.20a)

Voo i Ve =Vae iV = aib

and

2.2 2 2 2.2
\’)C‘_vi_i-"C_v?va—i_VN_l'_'vN'

{B.20b)
The sufficient conditions are quite complicated and need
some further notation: we write

2

wli=1 —vy/re, tan ¥ := b/a, V2 (B.21)

=vave.

Then writing ¢, = s.jc, = tcos(f + W), 1, = s,/c, =
tsin(f +yr), we have

My=Vyne (L, COS Y+ 1, 8in )

(B.22)

=vylc,c,cos0=vyme /v

Hence (B.19} reduces to

|2 =1—dmymeclel[(1+ 201 +13)

— (va/ve) — 217 cos? 6] (B.23)
and the stability condition becomes
2,-2 4 4 g2 2
§? < min {a e (251n2(9+l,’1)) } (B.24)
L8 cos®

The minimum with respect to > occurs at * = 2a/
sin 2(0 + y), so we have

ﬁzgmgin{l+ot|sin2(0+l,{1)|}- (B.25)

cos®

Further manipulation results in the stability region
shown in Fig. 12, where we have also shown the case b= a
using symmetry. In the standard Lax—Wendroff case, a =0,
we have just ¥2 < 1 as is well known; but more generally we
have, together with (B.20),

Necessary and sufficient conditions:

sin 2y — o
] -
+d(14aﬁn2w

172

I

) if a<gtany (B.26a}

V,=vcosy<l if aztany. (B.26b)
Thus as v, is increased relative to v, the stability region
expands from the quarter-circle to the whole square, 0< v,
v, L

" Finally, one can combine the results for the two problems
(B.1) and {B.13) to cover two-dimensional convection-
diffusion. We have seen in (B.12) that the key advantage in
treating the convective and diffusive fluxes consistently

vy A

FIG. 12. Stability region for the generalised Lax—-Wendroff method
(2D convection),
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shows itself for vo = v, In that case, it is shown in [14] that
a sufficient stability condition in the 2D case is

vi+vi<l and TN (B.27)

in an obvious notation,
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